Barcelona (34) 93 263 33 54 | Madrid (34) 91 329 55 00 | Norte (34) 94 623 26 48

Mapeo de señales en un edificio: Un experimento LoRaWAN

La tecnología LoRa (Long Range) permite el desarrollo de redes IoT  que cada vez son más demandadas. Para ponerlas en marcha es necesario disponer de una solución que optimice el consumo energético. Además, el alcance de la red tiene que ser amplio para abarcar a todos los dispositivos. En este artículo explicaremos un caso real de la instalación de un gateway para una red LoraWan.

Seguramente has oído hablar de LoRa o LoRaWAN, pero si no es así o quieres saber más te recomendamos que antes de seguir leas el artículo «Qué es LoRa, cómo funciona y características principales» que le dedicamos recientemente y donde explicamos las bases de esta tecnología.

La importancia del entorno

A la hora de decidirse por un gateway para un proyecto, es fundamental comprender el entorno en el que se colocará. Independientemente de la ubicación, interior o exterior, hay factores externos al dispositivo que afectarán a su rendimiento. Para una solución que vaya a estar dentro de un edificio, las características del edificio son de suma importancia para la optimización de esa solución.

Existe un método sencillo que proporcionará los datos necesarios para planificar y preparar un despliegue óptimo: el mapeo de señales o signal mapping. A continuación explicaremos el «por qué» y el «cómo» y algunos consejos importantes para planificar un proyecto de IoT en interiores.

¿Qué es el mapeo de señales en edificios y por qué es importante?

El concepto no es nuevo ni desconocido, pero su importancia es determinante. Conocer el entorno es crucial en toda implantación, ya que ayuda a determinar el número de gateways necesarios y su ubicación óptima para dar cobertura total al proyecto.

Para evaluar cómo se propaga la señal de radiofrecuencia por la infraestructura del edificio, es necesario realizar mediciones en una serie de puntos de control. Al generar una muestra de puntos de datos suficientemente grande para el dispositivo transmisor, manteniendo el dispositivo receptor estático, se pueden extraer conclusiones sobre cómo afecta el propio edificio a la propagación de la señal. De este modo, es posible predecir la calidad de recepción de la señal para distintos escenarios de despliegue. Esta información ayudará a planificar la red y a colocar el gateway o gateways.

¿Qué hay que tener en cuenta?

Hablando de edificios, hay varias consideraciones que hay que tener en cuenta. La propagación de señales en edificios no se ve afectada por fenómenos naturales como la nieve, la lluvia, la niebla, etc., pero debido a la diversidad de edificios, su tamaño, estructura, ubicación y diferentes tipos de materiales de construcción, puede variar ampliamente en función del escenario concreto.

Factores a tener en cuenta en un edificio

Debido a todos esos factores y obstáculos, la señal no puede radiarse en «línea recta». Esto hace que se crea una estructura multitrayectoria de distribución de la señal mucho más compleja que la que haría falta en un campo abierto.

Los cálculos deben tener en cuenta la atenuación de la señal cuando atraviesa las paredes de los edificios. Para las mediciones en exteriores hay que tener en cuenta la atenuación en función del entorno (zona de visibilidad directa, zona urbanizada, centro de ciudad) y para las mediciones en interiores, el tipo de edificio (edificios de ladrillo, edificios prefabricados, rascacielos). Esto determinará la colocación correcta del gateway y si es necesario instalar más de uno.

En otras palabras, los modelos que describen la propagación de la señal deben tener en cuenta las siguientes características:

  • La geometría influye de forma significativa.
  • En la mayoría de los casos no es posible utilizar modelos de distribución sencillos, normalmente se necesitan modelos multitrayectoria.
  • Los modelos deben tener en cuenta la penetración de la señal a través de las paredes y suelos de los edificios.

Modelos de distribución de señales

La clasificación de los modelos de distribución de señales en interiores es:

Modelos deterministas: los modelos deterministas más utilizados para predecir la distribución  de la potencia de la señal en los edificios son los modelos basados en el principio de la óptica del haz de distribución. Estos modelos aproximan la onda electromagnética a un haz que se propaga en la dirección de su vector normal.

Modelos empíricos: los modelos empíricos describen la distribución del nivel de señal mediante ecuaciones empíricas creadas a partir de múltiples mediciones. En caso de que la distribución de las particiones (paredes, suelos, muebles) sea homogénea o no dispongamos de una base de datos para su ubicación y parámetros, es conveniente utilizar el modelo One-slope. Este modelo simplificado describe la propagación de la señal como una onda esférica, cuyo nivel disminuye linealmente con el logaritmo de la distancia en un espacio homogéneo, provocando pérdidas de señal proporcionales al número y propiedades de las barreras.

Modelos semi-empíricos: En los casos en que las antenas de las estaciones base de los edificios están situadas en largos pasillos que provocan un efecto de guía de ondas o en los casos en que hay distintos tipos de paredes y habitaciones de diferentes tamaños, la precisión del modelo one-slope es insuficiente. Entonces es necesario utilizar modelos semiempíricos más precisos que tengan en cuenta la ubicación específica de las paredes y los suelos.

Modelos semi-determinados: Estos modelos han surgido como resultado de los esfuerzos por combinar las ventajas de los modelos deterministas y empíricos. Suelen basarse en modelos de haz complementados con fórmulas empíricas o bien abordan la cuestión de la propagación de la señal por medios completamente distintos, como el modelo XYZ.

Modelos híbridos: Combinaciones de modelos utilizados para cálculos complejos y alta precisión.

Hagamos un experimento

La teoría que hay detrás del mapeo de señales es muy amplia y demasiado técnica para el aficionado medio al IoT, por lo que resulta aburrida. Por eso no nos centraremos tanto en ella. En su lugar, hemos realizado un experimento de campo para ilustrar el proceso.

Para realizar las pruebas, estamos utilizando WisGate Edge Lite 2 como gateway interior y el WisNode Button 4K para proporcionar datos de muestra.

El gateway WisGate Edge Lite 2 junto al WisNode Button 4K usado en el mapeo

En cuanto al edificio, usaremos un enorme edificio de 4 plantas de construcción robusta, con estructura de acero, paredes gruesas de ladrillos y hormigón, y muchas habitaciones, todos ellos elementos potenciales perturbadores de la señal.

En la figura se puede apreciar el edificio de pruebas que fue construido en 1964. Como se puede apreciar, la construcción de esa época dista mucho de las soluciones constructivas modernas.

Edificio dónde se instalará el gateway

Pero esto es bueno para el experimento. ¿Por qué? Los procesos de construcción actuales se adaptan a las nuevas tecnologías, tanto en el propio edificio como en posibles actualizaciones a edificios inteligentes. Los edificios se construyen ahora con la tecnología en mente, no solo con las modernas técnicas y materiales de construcción, sino con la posible automatización y mejoras en su interior.

Pero también es posible modernizar edificios antiguos sin grandes cambios estructurales. Este es el verdadero reto, y por eso este edificio es el ejemplo perfecto. Dentro de un edificio como éste, con una forma cohesionada y sencilla, la posición natural del gateway sería en el centro. El WisGate Edge Lite 2 se coloca en el centro del pasillo principal de la segunda planta, montado en la parte superior de la pared, cerca del techo, con la antena apuntando hacia arriba. El WisNode Button 4K servirá para medir los puntos de control que nos permitirán conocer el rendimiento de la señal en todo el edificio.

Inicio de la mediciones

Como se ve a continuación, los puntos de control (CP) 1, 2 y 3 se encuentran en el primer piso, mientras que el gateway queda arriba. Concretamente, los puntos se encuentran al principio del pasillo, en el centro y en el otro extremo. Como referencia, la longitud del pasillo es de 63 m de media, 3,5 m de ancho y 3,5 m de alto. Según las mediciones realizadas, tenemos la mejor señal en el CP 2, ya que queda justo debajo del gateway. Lo sorprendente es que incluso los dos puntos más alejados tienen buena señal, a pesar del grueso techo de hormigón que separa el nodo del gateway.

Medidas en la primera planta

En el segundo piso se encuentras los puntos de control CP 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21 y 22. El gateway se encuentra en esta planta, en medio del pasillo. En esta planta, las mediciones tienen el mejor rendimiento debido a la proximidad del gateway y el nodo. En los puntos de control 6, 11 y 13 se observan ligeras perturbaciones de la señal. Sin embargo, estas perturbaciones no provocan la pérdida total de la comunicación.

Medidas en la segunda planta

Los grandes resultados de la segunda planta eran de esperar. Ahora se analizará un piso más arriba. En el tercer piso, se miden los CP 23, 24, 25, 26 y 27. El gateway queda por debajo, en la segunda planta. De las diversas mediciones realizadas, se concluye que la mejor calidad de señal se obtiene justo encima del gateway, es decir, en el CP 25. Sin embargo, eso no significa que la señal sea mala en el resto de puntos de control, no hay pérdida completa de la señal en ninguno de ellos.

Medidas en la tercera planta

Dejando el gateway en el centro de la segunda planta, nos desplazamos a la cuarta planta para medir en los puntos de control 28, 29 y 30. Los mejores resultados se reciben en el punto de control 29, que de nuevo queda justo encima del gateway. Justo debajo o justo encima del gateway, los obstáculos entre ella y el nodo son menores, por tanto se encuentra la mejor señal.

Medidas en la cuarta planta

En un edificio con una forma unificada y recta, como el del ejemplo, la cantidad de hormigón, estructuras y otros posibles perturbadores de la señal se distribuyen uniformemente en el espacio.

De las mediciones mostradas hasta ahora se puede concluir que la ubicación óptima del gateway en el interior es en el centro del edificio. Así lo demuestran las mediciones realizadas en todas las plantas. Como se ha visto, justo encima y debajo del gateway en las plantas primera, tercera y cuarta la señal era mejor debido a la menor cantidad de obstáculos verticales. Por otro lado, en la segunda planta, las mediciones fueron las mejores debido a las menores perturbaciones horizontales.

Mediciones con el Gateway en otras ubicaciones

A modo de comparación, también hemos probado a colocar el gateway en otras ubicaciones.

Primer caso: Colocamos el gateway en la primera planta, fijado a la pared del extremo sur del pasillo. La medición del punto de control se hizo en el cuarto piso, en el otro extremo del pasillo (norte). La longitud de la diagonal es de unos 65 metros en línea recta a través de las losas de hormigón de cada planta. El valor medio de RSSI es de -107 dBm.

Segundo caso: Cambiando un poco las cosas, el Gateway se coloca en el extremo sur del pasillo de la cuarta planta y la medición del punto de control se realiza abajo para medir la otra diagonal. La longitud de la línea es la misma con ligeras variaciones en los obstáculos debido a las pequeñas diferencias en la colocación de las habitaciones en cada planta. El valor medio de RSSI es de -108 dBm.

Mediciones con el gateway en otras ubicaciones (vista frontal)

Según las mediciones, se puede realizar con éxito el despliegue de puntos de acceso LoRaWAN en interiores, incluso en edificios con mucho hormigón y tabiques. Y esto es sólo con un gateway, con dos puede funcionar todavía mejor.

¿Y la cobertura fuera del edificio?

Dejando el gateway en medio del segundo piso, se midieron ocho puntos de control fuera del edificio. La distancia desde el portal hasta cada uno de los CP es de unos 70 metros en línea recta. Sólo hubo un punto de fallo en el CP 8 porque hay otro edificio en línea directa del edificio donde se encuentra el gateway. Éste absorbe un gran porcentaje de la señal, por lo que queda muy atenuada y no es posible recibir la señal. Sin embargo, las mediciones en los otros CP aprueban aunque no sean tan fuertes.

Se puede observar que también hay edificios entre otros CP y el gateway, por ejemplo el 2 y el 6, pero allí no hay una pérdida de señal significativa. ¿Por qué? La respuesta es el desplazamiento. El CP2 está más alto que el gateway y el gateway está más alto que el CP6, mientras que el CP8 está más o menos a la misma altura. Este es otro ejemplo de por qué la ubicación es importante.

Por lo tanto, si se va a realizar una actividad que necesite cobertura en el exterior de un edificio de este tipo, es mejor prever un gateway exterior adicional para garantizar la recepción de los mensajes.

Pruebas en el exterior

Los resultados

En cada CP pulsamos el botón varias veces (10 para ser exactos), generando varios uplinks, para recopilar datos más completos. En la tabla siguiente se muestra el valor medio de RSSI y SNR para cada punto de control.

Tabla resumen de medidas

Las mediciones realizadas han validado la hipótesis de que LoRaWAN tiene alcance suficiente para funcionar en un edificio grande y de construcción gruesa sin una degradación significativa de la señal. Se ha demostrado que un único gateway puede dar servicio a toda la zona del edificio proporcionando una buena cobertura y nivel de señal. Ampliar la cobertura al exterior en la zona cercana requeriría un gateway exterior, ya que aunque existe cierta cobertura no es óptima. Como era de esperar, la mejor posición para el gateway es el centro del edificio (planta 2, en medio del pasillo).

Más información sobre LoraWan y RAKwireless

RAKwireless es una empresa dedicada al desarrollo y fabricación de soluciones IoT, cuyo objetivo es crear soluciones fáciles de implementar y productos IoT modulares que sean accesibles para todos. RAKwireless dedica parte de su catálogo a productos Lora, ya que esta tecnología permite la creación de redes IoT eficaces con unos costes bajos y un alcance muy amplio. Sin duda, es una tecnología que ofrece una solución eficaz a problemas contemporáneos en distintos sectores. Ya sea en un cultivo o en una ciudad, su comportamiento es excepcional.

Venco es proveedor de soluciones electrónicas desde hace 40 años. Pregúntanos sin compromiso sobre cualquiera de los productos de RAKwireless y te asesoraremos en la mejor solución para tu aplicación o proyecto.

Vías de contacto:

También puedes suscribirte a nuestro newsletter para estar al día de las últimas entradas de nuestro blog y las novedades de nuestros partners, ferias, cursos y otras informaciones del sector: https://www.vencoel.com/blog/

 

Este artículo es una versión traducida del artículo original: Signal Mapping in a Building: A LoRaWAN Experiment